Comparative Statement showing the details of various Rapier Shuttleless Loom

Company	Lindauer Dornier Gmbh D-88129 Lindau	Picanol NV B-8900 leper	Smit Spa I-36015 Schio	
Model	PS	GamMax	GS900	G 6300F(Terry)
Nominal width (cm)/weft insertion rate ($\mathrm{m} / \mathrm{min}$)	$150-430 \mathrm{~cm}$ (in steps of 10 cm) depending on nominal width, shed motion and style	190-210-220-230-250-300-320-340-360-380; insertion rate up to $1800 \mathrm{~m} / \mathrm{min}$	170/360 1540	$\begin{aligned} & 220 / 360 \\ & 1500 \end{aligned}$
Rapier drive: A=cam, $\mathrm{B}=$ differential, $\mathrm{C}=$ push rod, $\mathrm{D}=$ crank motion, $\mathrm{E}=$ other	$\mathrm{E}=$ Conjugated cams	Proprietary balanced rotary linkage	B (spherical)	B (spherical)
Weft insertion element: $\mathrm{A}=$ flexible rapier, $\mathrm{B}=$ rigid rapier,(Ione side/both side) (II-telescopic, III-tip/loop transfer)	B III	A I (tip transfer)	A I	A I
Weft end transfer: A=negative, $\mathrm{B}=$ positive, $\mathrm{C}=$ selectabler	B	A	A	A
Rapier guiding: $\mathrm{A}=\mathrm{left}, \mathrm{B}=\mathrm{no}$	B	A	B	B
Adjustable rapier stroke: $A=y e s, B=n o$, possible width change (cm):	A 40% symetric 10% asymetric	Up to 100 cm dependent on reed width	$\begin{aligned} & \mathrm{A}, \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{A}, \\ & 80 \end{aligned}$
Weft waste (cm): $\mathrm{A}=$ left, $\mathrm{B}=$ right	According to style	5 cm ; electronic regulation RHS optional	$\mathrm{A}=3, \mathrm{~B}=4 / 5$	$\mathrm{A}=3, \mathrm{~B}=4 / 5$
Shedding Unit: A=heald frame, $B=$ jacquard	A, B	A, B	A, B	A, B
Maximum No.of heald frames	28	8 (cam motion), 24 (dobby)	20	20
Maximum heald frame pitch	18 mm	12 mm	330/380	330/380
Selvedge formation	Motoleno, Ecomoto, outside and center tucking devices	Leno formation (ELSY (patented): independently electronically controlled or mechanical	Independent Mech./Elec	Independent Mech./Elec
Prevention of starting marks by: $\mathrm{A}=$ lost pick, $\mathrm{B}=$ fabric edge displacement, $\mathrm{C}=$ warp let-off and density correction, $\mathrm{D}=$ other	B, C, D= Automatically, time adjustable motor acceleration	Correction of warp let-off, fabric take-up and density; full pick finding; starting without filling insertion; "sumo motor"	A, B, C, D	A, B, C, D
Maximum warp beam diameter (mm):	1250	1100	1000	1250
Maximum cloth beam diameter (mm): A=inside the machine, $\mathrm{B}=$ outside the machine	$\begin{aligned} & \text { A } 540 \\ & \text { B } 1800 \end{aligned}$	$\begin{aligned} & \text { A= Up to } 700 \mathrm{~mm} \text { (standard } \\ & 600 \mathrm{~mm}) ; \\ & B=U p \text { to } 1500 \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}=600 \\ & \mathrm{~B}=1800 \end{aligned}$	$\begin{aligned} & \mathrm{A}=600 \\ & \mathrm{~B}=1800 \end{aligned}$
Warp let -off control: A=mechanical regulator, $\mathrm{B}=$ electronic: sensor type and position (I= force sensor, II= displacement sensor)	B with load cell and adjustment accuracy of $+/-1 \mathrm{cN}$	Load cell controlled electronic warp let-off	B, I	B I, B II
Back rest roller motion: $\mathrm{A}=$ passive (spring or spring/damper system), $\mathrm{B}=$ active (driven), $\mathrm{C}=$ active and passive (selectable)	A, B, C	Passive	A	A
Drive technology: $\mathrm{A}=$ main drive, $\mathrm{B}=$ sley drive (cam/crank motion), C=warp let-off, $\mathrm{D}=$ fabric take-up	A permanently running motor with electro magnetic clutch/brake unit, B Two high precision synchronized drives on both sides of the machine, C Electronic, D Electronic	A, positive cam and cam followers sley drive; electronic let-off and take-up (servo motor driven)	A, C, D	A, B, C, D

RAPIER WEAVING MACHINES

Company	Lindauer Dornier Gmbh D-88129 Lindau	Picanol NV B-8900 leper	Smit Spa I-36015 Schio	
Model	AS B, C	Gam Max	GS900	G6300F(Terry)
Automation: Warp and product change (QSC), Cloth beam change, C=weft storage changeover.	Quick style change with split frame design; easy warp gaiting and cloth doffing; Prewinder Switch off	C	C	
Measure for reducing yarn loading: A= warp, B=weft	A: low weft acceleration and electronic weft brake, B: self- adjusting warp tension, active back rest roller	Weft: PFL electronic filling tensioner, quickstep straight- insertion position	A, B	A, B
Fabric weight from/to [g/m2]:	10 to 4000			

RAPIER WEAVING MACHINES

Company	$\begin{aligned} & \hline \text { Sultex AG } \\ & \text { CH-8630 Ruti } \end{aligned}$	Promatech I-24020 Colzate (BG)	VAN DE WILE NV B-8510 Marke
Model	G6200 E	LEONARDO SILVER	UNIVERSAL CUT LOOP UCL83
Nominal width (cm)/weft insertion rate ($\mathrm{m} / \mathrm{min}$)	140-280 Up to 1260	170-380,670 rpm, up to 1500	$\begin{aligned} & \text { Up to } 420 \mathrm{~cm} \text { in pile- } 1764 \\ & (3 \times 140 \mathrm{rpm}) \\ & \hline \end{aligned}$
Rapier drive: $\mathrm{A}=$ cam, $\mathrm{B}=$ differential, $\mathrm{C}=$ push rod, $\mathrm{D}=$ crank motion, $\mathrm{E}=$ other	D	E: (original "propeller" system)	Conjugated cams
Weft insertion element: $\mathrm{A}=$ flexible rapier, $\mathrm{B}=$ rigid rapier,(Ione side/both side) (II-telescopic, III-tip/loop transfer)	A, B	A	Triple rigid rapiers- bilateral tip transfer
Weft end transfer: A=negative, $\mathrm{B}=$ positive, $\mathrm{C}=$ selectable	A	A	A
Rapier guiding: $\mathrm{A}=\mathrm{left}, \mathrm{B}=\mathrm{no}$	B	A: transfer EK version, B: FTS version	Yes
Adjustable rapier stroke: $\mathrm{A}=\mathrm{yes}, \mathrm{B}=\mathrm{no}$, possible width change (cm):	$\begin{aligned} & \hline \text { B } \\ & 150 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & 100 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { Yes } \\ & 100 \mathrm{~mm} \end{aligned}$
Weft waste (cm): $\mathrm{A}=$ left, $\mathrm{B}=$ right		A: 30 mm (average), B: depending on yarn type, shedding, speed	<3
Shedding Unit: A=heald frame, $B=$ jacquard	A, B	A, B	A
Maximum No.of heald frames	24	20	20
Maximum heald frame pitch	12 mm	12 mm	Reed 320 dents/m
Selvedge formation	Electronic/mechanical tucking device	Independent Electronic Leno device, Melted selvedge, Lateral and intermediate tuck-in device	Filling catch device on selvedge
Prevention of starting marks by: $\mathrm{A}=$ lost pick, $\mathrm{B}=$ fabric edge displacement, $\mathrm{C}=$ warp let-off and density correction, $\mathrm{D}=$ other	A, B, C, D	A, B, C, D	Pick density correction
Maximum warp beam diameter (mm):	1016	1100	1250
Maximum cloth beam diameter (mm): $\mathrm{A}=$ inside the machine, $\mathrm{B}=$ outside the machine	A/570	$\begin{aligned} & \text { A: } 500 \\ & \text { B: } 140 \end{aligned}$	Folding in 2 carts
Warp let -off control: A=mechanical regulator, $\mathrm{B}=$ electronic: sensor type and position ($\mathrm{I}=$ force sensor, $\mathrm{II}=$ displacement sensor)	B/I	B, I: load cell	Electrical let-off
Back rest roller motion: $\mathrm{A}=$ passive (spring or spring/damper system), $\mathrm{B}=$ active (driven), $\mathrm{C}=$ active and passive (selectable)	A, B what is C?	A	Damper system
Drive technology: $\mathrm{A}=$ main drive, $\mathrm{B}=$ sley drive (cam/crank motion), $\mathrm{C}=$ warp let-off, $\mathrm{D}=$ fabric take-up	A: Clutch/brake unit B: Cams C: Servomotor D: Servomotor	A: standard motor + clutch/brake, A: HI-DIRECT DRIVE with brushless motor, B\&C: electronic with brushless motor, B: conjugated intermediate cam boxes	A: AC motor (steplessly adjustable) B: Cam C: electronic D: servomotor
Automation: Warp and product change (QSC), Cloth beam change, $\mathrm{C}=$ weft storage changeover.	A, B, C	QSC	Weft \& pile bobbin change during weaving weft changer possible
Measure for reducing yarn loading: $A=$ warp, $B=w e f t$	A: Electronic weft brake EFB, optimized motions, straight-line weft insertion in center of shed, self-adjusting cutting timing, B: symmetrical shed geometry, No rapier guides, positively driven warp tensioner,	B: electronic weft brakes	A: electrical beam let-off B: programmed weft brakes

RAPIER WEAVING MACHINES

Company	Sultex AG CH-8630 Ruti	Promatech I-24020 Colzate (BG)	VAN DE WILE NV B-8510 Marke
Model	G6200 E	LEONARDO SILVER	UNIVERSAL CUT LOOP UCL83
Fabric weight from/to [g/m2]:		From 15 up to 800	Up to 3000
Possible weft yarns (fiber material): $A=$ staple fibre yarns B = filament yarns	A, B	A, B	A, B
Weft yarn count range from/to [tex], [Nm], [dtex]	Nm 1-Nm 200, dtex 11-dtex 3300 Monofilaments up to 0.3 mm Fancy yarns up to 3 mm	Nm 2 to Nm 200	3×50 tex up to 2×560 tex
Count range of simultaneously insertable weft ends from/to [tex] [Nm], [dtex]	-	Double, triple for max Nm 200	1 to 2
Weft density from/to [ends/cm]	0.5-300	From 4 to 150	4/cm to 10/cm
Possible number of: $\mathrm{A}=$ weft colour, $\mathrm{B}=$ weft yarns	8	12	2x2
Possible picking sequence:	Any	Any possible sequence, electronically controlled	1/1
Remote diagnosis possible $\mathrm{A}=$ yes, $\mathrm{B}=\mathrm{no}, \mathrm{C}=$ option	B	A: remote technical support loomp@rtner	A: with we@velink network
Machine interconnection possible $A=$ yes, $B=n o$	A	A	A: with we@ velink network
Other models available $A=$ yes, $B=n o$	B	A	A (see other)
Other supplementary equipment	Special equipment for terry fabric, delicate fabrics, air bags, aramide, labels and hair yarns	${ }^{-}$	Multiple patch weaving for carpets \& area rugs, triple rapier version for sisal look carpets SLX83, carpets with cut pile, loop pile and flat wave effects: Most flexible carpet weaving m / c, text and logo's possible in loops.
ONS-No.	4-234	4-230	4-231

Company	Gunne Webmaschinen GmbH \& Co.KG DE-59519 Mohnsee	Nuova Vamatex SPA I-24020 Villa di serio	
Model Designation	Rigid Rapier Wvg m/c for double pile fabrics PZR plus	Leonardo	P 1001 SUPER ek
Nominal width (cm)/weft insertion rate $(\mathrm{m} / \mathrm{min})$	$160,180,230,240$ up to 2×640 $\mathrm{m} / \mathrm{min}$ (up to $2 \times 400 \mathrm{rpm}$)	$\begin{aligned} & 170-190-21 \\ & (-220-230-260-280-300-320- \\ & 340-360-380-39) \\ & \hline \end{aligned}$	$\begin{aligned} & 160-190-210-230-260-300- \\ & 320-340-360-380 \end{aligned}$
Rapier drive: A=cam, $\mathrm{B}=$ differential, $\mathrm{C}=$ push rod, $\mathrm{D}=$ crank motion, $\mathrm{E}=$ other	A	Propeller system (patterned device)	Propeller system (patterned device)
Weft insertion element: $\mathrm{A}=$ flexible rapier, $\mathrm{B}=$ rigid rapier,(Ione side/both side) (II-telescopic, III-tip/loop transfer)	B	A	A
Weft end transfer: A=negative, $\mathrm{B}=$ positive, $\mathrm{C}=$ selectable	A	Up to 1500	A
Rapier guiding: $\mathrm{A}=$ left, $\mathrm{B}=$ no	Yes, All side precision guidance of rapier rods	Yes	Yes
Adjustable rapier stroke: $A=y e s, B=n o$, possible width change (cm):	A up to 70cm	A	A
Weft waste (cm): A= left, B=right	-	$35 \mathrm{~mm}, 40 \mathrm{~mm}$	$35 \mathrm{~mm}, 40 \mathrm{~mm}$
Shedding Unit: $\mathrm{A}=$ heald frame, B=jacquard, C= Dobby	A, B, C	A, B, C	A, B, C
Maximum No.of heald frames	Up to 10 pile shafts	20	20
Maximum heald frame pitch	$18 \mathrm{~mm} /$ pile \& ground: 18 mm ; selvedge: 12 mm	-	-
Selvedge formation	Leno device	Independent from heald frame/tuck-in device/heat welled for synthetic yarn	Independent from heald frame/tuck-in device/heat welded for synthetic yarn
Prevention of starting marks by: $\mathrm{A}=$ lost pick, $\mathrm{B}=$ fabric edge displacement, $\mathrm{C}=$ warp let-off and density correction, $\mathrm{D}=$ other	D-by positioning of cloth fell	All these corrections are available; set-up by microprocessor	All these corrections are available; set-up by microprocessor
Maximum warp beam diameter (mm):	1250	1100	1000
Maximum cloth beam diameter (mm): $\mathrm{A}=$ inside the machine, $\mathrm{B}=$ outside the machine	$\begin{aligned} & \mathrm{A}=\mathrm{no}, \\ & \mathrm{~B}=1250 \end{aligned}$	50, (150 with batching unit)	50, (150 with batching unit)
Warp let -off control: A=mechanical	B-by servomotors/positive,	B-proximity sensor to weight the	B-proximity sensor to weight the

regulator, $B=$ electronic: sensor type and position ($\mathrm{I}=$ force sensor, $\mathrm{II}=$ displacement sensor)	Microprocessor controlled	warp load, load cell for top beam.	warp load,
Back rest roller motion: $\mathrm{A}=$ passive (spring or spring/damper system), $\mathrm{B}=$ active (driven), $\mathrm{C}=$ active and passive (selectable)	A	A	A
Drive technology: $\mathrm{A}=$ main drive, $\mathrm{B}=$ sley drive (cam/crank motion), C=warp let-off, $\mathrm{D}=$ fabric take-up	A-motor and brake clutch system; B-pair of complimentary cams, C\&D-servo motors.	$\mathrm{A}=$ asynchronous motor and clutch-brake; $\mathrm{B}=$ Both sides (with third central drive for nominal width 30003800 mm); C\&D=brushless motor	$\mathrm{A}=$ asynchronous motor and clutch-brake; $\mathrm{B}=$ Both sides (with third central drive for nominal width 30003800 mm); C\&D=brushless motor
Automation: Warp and product change (QSC), Cloth beam change, $\mathrm{C}=$ weft storage changeover.	C-yes	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { No } \end{aligned}$	$\begin{array}{\|l} \text { Yes } \\ \text { No } \\ \text { No } \end{array}$
What setting aids for quick, precise and reproducible (transferable from m / c to m / c) shed geometry setting? Backrest roller/ warp stop motion/heald frames/harness/cloth support and for warp tension?	By scale disc, gauge	Electronic setting data/ With graduated scale/ With graduated scale/ With ergonomic set-up	Electronic setting data/ With graduated scale/ With graduated scale/ With ergonomic set-up
Which features are designed to reduce yarn stress (warp,weft)	-	Reduced dimension shedpositive weft brakes	Reduced dimension shedpositive weft brakes

RAPIER WEAVING MACHINES

Company	Gunne Webmaschinen GmbH \& Co.KG DE-59519 Mohnsee	Nuova Vamatex SPA I-24020 Villa di serio	
Fabric weight from/to [g/m2]:	80-1500	15-800	15-800
Possible weft yarns (fiber material): A= staple fibre yarns B = filament yarns	A-cotton, B-PE, PA, viscose and other	All yarns	All yarns
Weft yarn count range from/to [tex], [Nm], [dtex]	Nm 5-Nm 160	$2 \mathrm{Nm}-20 \mathrm{Nm}, 10$ dtex-3000 dtex	$2 \mathrm{Nm}-20 \mathrm{Nm}, 10$ dtex-3000 dtex
Count range of simultaneously insertable weft ends from/to [tex] [Nm], [dtex]	Nm 5-Nm 160	$2 \mathrm{Nm}-150 \mathrm{Nm}, 20 \text { dtex- } 3000$ dtex	$2 \text { Nm- } 150 \mathrm{Nm}, 20 \text { dtex- } 3000$ dtex
Weft density from/to [ends/cm]	10-50	4-120	4-120
Possible number of: $\mathrm{A}=$ weft colour, $\mathrm{B}=$ weft yarns	A-up to 2X4 colors; B- up to 2×4 weft type	$\begin{aligned} & \mathrm{A}=4-8-12 ; \\ & \mathrm{B}=4-8-12 \end{aligned}$	$\begin{aligned} & \mathrm{A}=4-8-12 ; \\ & \mathrm{B}=4-8-12 \end{aligned}$
Possible picking sequence:	Pic a pic	All	All
Remote diagnosis possible $\mathrm{A}=$ yes, $\mathrm{B}=\mathrm{no}, \mathrm{C}=$ option	-	-	-
Machine interconnection possible $\mathrm{A}=$ yes, $\mathrm{B}=\mathrm{no}$	-	-	-
Other models available $\mathrm{A}=\text { yes, } \mathrm{B}=\mathrm{no}$	-	-	-
Other supplementary equipment	-	-	-
ONS-No.	-	-	-

